GENERAL ENGINEERING (ENGR)

ENGR 102 Introduction to Engineering 1 Credit Hour(s)
This course will introduce students to the engineering profession and the study skills necessary to succeed in the rigorous course of study to achieve an engineering degree. Students will be taught how to think critically and reason analytically in order to skillfully navigate the course of instruction they have chosen to pursue and to be equipped for success in that profession. This is a required course for all engineering majors.

Offered: Resident

ENGR 105 Introduction to Engineering I 2 Credit Hour(s)
This course will introduce students to the engineering profession, the entrepreneurial mindset, and the study skills necessary to succeed in the rigorous course of study to achieve an engineering degree. The course introduces fundamental engineering concepts, including spreadsheets, dimensions and units, engineering communication, engineering ethics and the engineering design process. This is a required course for online engineering majors and also serves non-engineering students by exposing them to an overview of the engineering discipline.

Offered: Online

ENGR 110 Introduction to Engineering Fundamentals 3 Credit Hour(s)
Prerequisite: ENGR 102 (may be taken concurrently) and (MATH 128 (may be taken concurrently) or MATH 131 (may be taken concurrently) or MATH 132 (may be taken concurrently))
Introduction to engineering problem solving techniques, the engineering design process, and the engineering profession. This course also introduces students to the various engineering disciplines offered at Liberty University and enables them to chart a path to success in achieving their engineering degree, as well as helping students understand what they must do to excel in their studies. This course also serves non-engineering students by exposing them to an overview of the engineering discipline. This course is mandatory for all engineering majors.

Offered: Resident

ENGR 115 Introduction to Engineering II 2 Credit Hour(s)
Online Prerequisite: ENGR 105 and (MATH 128 (may be taken concurrently) or MATH 130 (may be taken concurrently) or MATH 131 (may be taken concurrently) or MATH 201 (may be taken concurrently) or MATH 217 (may be taken concurrently))
This course is a study of the fundamental engineering concepts of length, time, mass, force, temperature, electricity, energy and power, with a focus on developing problem-solving skills and becoming analytical, detail-oriented and creative engineers. Understanding of the fundamental engineering concepts is reinforced through practical analytical exercises and completion of a team design project. This course serves as the foundation for entry into engineering disciplinary studies and is a required course for online engineering majors.

Offered: Online

ENGR 125 Visualization for Engineers 1 Credit Hour(s)
Prerequisite: ENGR 110
To train students on graphical applications of vital and practical importance in engineering. The intention is to assist students to improve their three-dimensional spatial cognitive skills. The creation and interpretation of graphical communication will be introduced. Concepts include: two and three-dimensional part and assembly representations, dimensioning and tolerance as a link between design and manufacturing, introduction to solid modeling and virtual prototyping.

Offered: Resident

ENGR 133 Calculus with MATLAB 1 Credit Hour(s)
Prerequisite: MATH 131 (may be taken concurrently) or ENGR 131 (may be taken concurrently)
This course is intended to be an introductory MATLAB Lab in which the topics of arithmetic, algebra, plotting, preparation of m-files, limits, derivatives, related rates, optimization, integration, and other engineering-related topics will be investigated. (This course is intended for Engineering, Computer Science or Internet Technology majors only.)

Offered: Resident and Online

ENGR 210 Probability and Statistical Methods for Engineering 3 Credit Hour(s)
Prerequisite: (ENGR 131 or MATH 131) and (ENGR 110 or ENGR 115 or CSCI 110 or CSIS 110)
Introduction to applied probability and the principles and methodologies of statistical inference. Topics include methods of data analysis, point and interval estimation; test of hypotheses, correlation, regression and an introduction to analysis of variance methods.

Offered: Resident and Online

ENGR 235 Statics 3 Credit Hour(s)
Prerequisite: PHYS 231
A study of 2D and 3D force systems, equilibrium, structures, distributed forces, shear and bending moment diagrams, friction, and area moments of inertia. Analysis of the static equilibrium of rigid bodies and fluids in static conditions. Topics include free-body diagram, concentrated forces, distributed forces, forces due to friction, and inertia forces, as well as their application to the analysis of machines, structures and systems.

Offered: Resident and Online

ENGR 240 Dynamics 3 Credit Hour(s)
Prerequisite: ENGR 235
A study of force action related to displacement, velocity and acceleration of particles and rigid bodies using translation and rotation, work and energy and impulse and momentum principles. Course is presented in two parts: the geometric aspects of the motion, or kinematics; and the analysis of forces causing the motion, or kinetics.

Offered: Resident and Online

ENGR 270 Technical Communication 3 Credit Hour(s)
Prerequisite: ENGL 101
This course will teach students how to write documents representing the three main types of technical writing: operational (instructional), promotional (argumentative and analytical), and reportorial (expository, informational and analytical). Students will also evaluate and edit documents belonging to these categories by examining how well these documents serve their purpose for particular audiences in different cultural and social contexts. Students will study and practice communicating ideas competently in diverse public and private speaking venues.

Offered: Resident and Online
ENGR 277 Engineering Ethical and Legal Issues 3 Credit Hour(s)
Prerequisite: (BWVW 102 or GNEC 102) or (BWVW102 Exempt with a score of 5)
Introduction to the ethical and legal issues encountered during the development of engineering projects from a Christian perspective. Topics include copyrights, patents, contracts, environmental responsibility, personnel management, and professionalism. (Formerly ENGR 377)
Offered: Resident

ENGR 299 Internship 0 Credit Hour(s)
Offered: Resident

ENGR 313 Mechatronics 4 Credit Hour(s)
Prerequisite: MATH 334 and PHYS 231 and PHYS 232
An introductory study of the fundamental principles and technologies found in modern computer-controlled machines and processes, or mechatronics systems. Students learn about the four main components of a mechatronic system: sensors, actuators, motion transmission mechanisms, and controllers. Students are expected to design and build a mechatronic system. (Formerly ENGR 213)
Registration Restrictions: Junior Status
Offered: Resident

ENGR 315 Fluid Dynamics 3 Credit Hour(s)
Prerequisite: MATH 231 and ENGR 235
To provide an understanding of both the kinematics and kinetics of fluids. Students gain knowledge on the fundamental conservation laws of mass, momentum, and energy. Students will be expected to gain an ability to solve and design engineering problems involving pipe flow, turbomachines, pumps, large reservoirs, etc. Topics include: the Reynolds transport theorem, The Bernoulli’s equation, applications of fluid momentum to propellers, wind turbines, turbojets, and rockets, differential fluid flow analysis, dimensional analysis and similitude, Reynolds number and flow classification, analysis and design for pipe flow, flow over external surfaces and boundary layer, cavitation and turbo machines.
Offered: Resident and Online

ENGR 330 Mechanics of Materials 3 Credit Hour(s)
Prerequisite: ENGR 235
A thorough study of the principles that govern the internal effects of stress and strain in solid bodies that are subjected to external loading. The purpose is to enable the engineering student to design solid components and structures by selecting materials and geometry. Students learn to compare strengths of materials against internal stresses, deformation of materials against internal strains. Topics also include: mechanical properties of materials, types of loading, plane-stress and plane-strain conditions, design of beams and shafts, and buckling.
Offered: Resident and Online

ENGR 360 Heat Transfer 3 Credit Hour(s)
Prerequisite: MATH 334 and PHYS 320
A study of the fundamentals of the three traditional forms of heat transfer: conduction, convection, and radiation. Both steady state as well as transient heat transfer are introduced. The concept of numerical methods in the solution of realistic heat conduction problems is presented. Students are exposed to external and internal forced as well as natural convective heat transfer. Selection and design of heat exchangers are introduced both theoretically and practically.
Offered: Resident

ENGR 370 Quality Assurance 3 Credit Hour(s)
Prerequisite: ENGR 210
Introduction to the principles involved in designing statistical quality control systems. Topics include probability concepts, density and distribution functions, control chart concepts and sampling inspection plans.
Offered: Resident

ENGR 381 Engineering Design Introduction 3 Credit Hour(s)
Resident Prerequisite: MATH 334 (may be taken concurrently) and ENGR 270 and PHYS 232 (may be taken concurrently) and ENGI 220 and (RSCG 201 or Inquiry Research with a score of 80 or Research with a score of 80 or Research (prior to 2017-2018) with a score of 80)
Online Prerequisite: MATH 334 (may be taken concurrently) and ENGR 270 and PHYS 232 (may be taken concurrently) and ENGI 220
Introduction to the design process. Topics include system engineering, teamwork, design specifications, conceptual design, scheduling, developing a business plan, market survey, and budgeting.
Registration Restrictions: Chair approval, Junior Status
Offered: Resident and Online

ENGR 385 Thermodynamics II 3 Credit Hour(s)
Prerequisite: PHYS 320
To bridge the gap between knowledge of fundamentals of thermodynamics and its applications. Students are presented a wealth of real-world engineering examples involving thermal systems. Starting with the ideal concept of exergy, students are introduced to gas power cycles, vapor and combined power cycles, refrigeration cycles, for pure substances and mixtures. Other topics include chemical reactions, chemical and phase equilibrium, and compressible flow.
Offered: Resident

ENGR 405 Dynamic Systems Modeling 3 Credit Hour(s)
Prerequisite: MATH 334 and ENGR 240
A study of the modeling, simulation, and control of mechatronic systems. Upon successful completion of this course, students will be able to: develop mathematical models of real systems; use techniques to analyze and understand systems behavior; use modern computational tools to simulate the dynamic response of systems to external stimuli; and design automatic control systems. Topics will include: dynamic models, linearity and nonlinearity of systems, multiport systems and bond graphs, basic bond graph elements, various types of mechanical and electrical systems, state-space equations and automated simulations, and analysis and control of linear systems. (Formerly ENGR 365)
Offered: Resident

ENGR 481 Engineering Design I 3 Credit Hour(s)
Resident Prerequisite: ENGR 381 and (MATH 334 or MATH 432) and PHYS 232
Online Prerequisite: ENGR 381 and (MATH 334 or MATH 432 and PHYS 232)
The second course in the design sequence of formal design courses that emphasizes the design process. Student teams carry a project from inception to completion to satisfy the need of a client. In addition to technical design, factors such as safety, economics, and ethical and societal implications are considered.
Offered: Resident and Online

ENGR 482 Engineering Design II 3 Credit Hour(s)
Prerequisite: ENGR 481 or ENGE 481 or ENGC 481 or ENGI 481
The third course in the design sequence where the student is exposed to engineering design and development. Design process culminates in prototype development, gathering performance data and presenting a final design briefing to peers and department faculty.
Offered: Resident and Online
ENGR 495 Directed Research 1-6 Credit Hour(s)
Research-oriented project or an independently completed course of study in a specially designed area as approved and supervised by the instructor. May be repeated for up to 6 credits or as approved by the department chair.

Registration Restrictions: Written permission of the chairman of the department in area of concentration and consent of instructor.
Offered: Resident

ENGR 497 Special Topics in Engineering 1-3 Credit Hour(s)
Offered: Resident